
CENTRAL EUROPEAN REVIEW
OF ECONOMICS AND MANAGEMENT

ISSN 2543-9472; eISSN 2544-0365

www.cerem-review.eu

www.ojs.wsb.wroclaw.pl Vol. 1, No. 3, 135-152, September 2017

Correspondence address: Maciej Łabędzki, Poznańskie Centrum Superkomputerowo-Sieciowe,

Kancelaria, ul. Jana Pawła II 10, 61-139 Poznań, Poland. E-mail: office@man.poznan.pl;

labedzki@man.poznan.pl.

Received: 24-11-2017, Revised: 28-04-2017, Accepted: 05-06-2017

http://dx.doi.org/10.29015/cerem.359

© 2017 WSB UNIVERSITY IN WROCŁAW

Agile effort estimation in software development

projects – case study

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin WOLSKI

Poznań Supercomputing and Network Center, Poland

Abstract:

Aim: The purpose of this paper is to identify common mistakes and pitfalls as well as best practices in

estimating labor intensity in software projects. The quality of estimations in less experienced teams is

often unsatisfactory, as a result of which estimation as part of the software development process is

abandoned. The decision is usually justified by misunderstanding "agility". This article is part of the

discussion on current trends in estimation, especially in the context of the new "no estimates" approach.

Design / Research methods: The publication is a case study based on the experience of a mature

development team. The author, on the basis of literature-based estimation techniques, shows good and

bad practices, as well as common mistakes in thinking and behavior.

Conclusions / findings: The key to correct estimation is: understanding the difference between labor

intensity and time, ability to monitor performance, as well as how to analyze staff requirements for the

team.

Originality / value of the article: The publication helps to master confidence-boosting techniques for

any estimation (duration, and indirectly, the cost of software development) where requirements are

known, but mainly at the stage of project implementation (design and implementation).

Limitations of the research: The work does not address the problems of initial estimation of projects,

i.e. the estimation made in the early stages of planning.

Key words: software development, estimation, effort, measurement, requirements engineering, story

points, Scrum

JEL: L86

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

136

1. Introduction

Estimating effort is an important issue in terms of ensuring a high quality of a

software development project. The central motivation to create estimations is the

need to answer the question, “How long does it take and with what resources to

execute a particular functionality?”. A developer team can occasionally see the need

to create estimations, while at other times it will be a practice adopted at the

organizational level. Depending on the circumstances and the team itself, not only

what will be estimated but also the estimation method will vary. Still, the usefulness

of the results obtained will be conditional on the correctness of the assumptions

adopted and on choosing the right approach.

According to the scholarly literature, the problem involving the cost estimation

of software dates back to 1960’s (Nelson, Edward 1967; Farr, Zagorski 1964). The

sheer number of available scientific publications attests to both the prevalence and

far-reaching dimension of this issue (Jørgensen, Shepperd 2006: 33-53). For over 50

years, numerous estimation methods have been proposed. Amongst them, we can

encounter complex as well as fairly simple calculation methods. Experimental

implementations of tools automating such calculations have been created, e.g. using

machine learning (Srinivasan, Fisher 1995: 126-137), or Bayesian network

(Pendharkar et al. 2005: 615-624). The paper does not seek to analyze all of them,

and even less so – to identify the best among them (Mahnič 2011: 123-128;

Bjarnason et al. 2016: 61-79; Torrecilla-Salinas et al. 2015: 124-144). However, it

presents examples of a successful and unsuccessful application of specific practices,

their effectiveness and easiness of implementation.

The paper shows the experience of a group of programmers with a 10-year long

experience of working with the Java programming language. In their vast majority,

the projects the group implemented comprise “bespoke” systems. They tend to be

built from the scratch, they solve unusual problems and fulfill individual

requirements of the client. The team executes small and medium scale-projects,

deploying an agile approach, Scrum (Schwaber, Beedle 2002; Schwaber, Sutherland

2013), and the experiences described in the paper refer to just such cases.

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

137

2. Analyzed projects

The case study presented in the paper draws on three reference projects (the

names of the two have been changed). In each of the projects agile techniques were

used, with the differences essentially referring to the way the requirements were

defined and delivered.

OSW System – a project designed to rebuild and develop the already existing

education system. It took a group working in two separate locations one year to

implement the project. The average number of programmers engaged in it was 10.

The main technology was the Java language. Detailed requirements were known in

advance. The team estimated all user stories quite thoroughly, since they were

similar to one another functionally. Still, for technical reasons, it was not possible to

reduce them to one general user story by way of generalization. As a result of

changing the requirements – which happened on numerous occasions in the course

of the project – the user story received new estimation. The team was able to plan its

work precisely for the next sprint. Moreover, it was capable of specifying the

completion date, and, along with the changing requirements – to propose a new

estimation.

TOPO System – building an information repository with computer network

topology as a core service for external systems. A six-person team conducted work

for six years. This was a project with user stories known in advance and defined at a

very general level. The developer team basically broke down the general user stories

into the smaller ones, within which the team identified subtasks. Next, it made

estimations for the user stories thus defined. The more accurately the user story was

estimated, the less time was left before beginning the implementation work.

FOODIE System – a platform for sharing knowledge and electronic resources

for the agricultural industry1. Its development took a three-person team 16 months.

There was a pretty general definition of the goal of the product’s prototype. The

functional requirements were identified on a day-to-day basis, often as a result of the

verification of the realized increments. In the first phase of the project, there were no

1 https://www.foodie-cloud.org/

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

138

clearly defined user stories– the user stories with estimations allowed the next two

iterations to be planned.

3. Basic issues

Estimating the amount of work is a very common practice, and yet not that

absolute as to be spread everywhere. Performing tasks without estimations can take

place everywhere where the team does not have to report on the progress of its work

and there is no firm deadline within which a particular undertaking has to be

completed. From the team’s perspective, the decision on conducting estimations

belongs to the project manager; however, in general, it is necessitated by having to

control costs and deadlines. In commercial projects, specific dates and sums are very

likely to be an element of the contract, for enterprises allocate necessary funds in

advance. For research projects, a scientific institution or a firm appoints a team,

frequently the recipients group of the system is limited, with the effects being

expected in a longer term perspective.

Whatever the actual goal behind making estimations, these values are always

marred by an error. They are, after all, driven by the workings of the team’s more or

less precise intuition, and not by the calculation of hard input data. That is why plans

and forecasts drawing on such data, by definition, are imprecise.

3.1 Work organization in Scrum

A very popular methodology applied in the work of software development teams

is Scrum. As an agile methodology, Scrum forces one to work in iterations and

regular functional increments. Although Scrum itself stems from the IT industry,

where it is also most frequently deployed, it represents a method of organizing work

on any complex product, as its creators tend to emphasize (Schwaber, Sutherland

2013).

Scrum introduces its own terminology, clearly defining its new concepts. One of

such is Product Backlog. It is a list of tasks to be performed by the team working on

a product. The lists contains all the tasks, whatever their nature, whose execution

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

139

will lead to meeting the set objectives. Product Backlog is created and maintained by

a person responsible for setting the directions of work within the project. Such a

person usually understands the best the needs of the project, and he/she is referred to

as Product Owner in the Scrum terminology. This person’s responsibilities

comprise, among others: defining tasks at a substantial level (not the technical one),

prioritizing and ensuring that the tasks are clearly understood by all persons

involved in the project. In its structure, Product Backlog can be likened to a stack on

whose top there are tasks to be completed first. Their priority arises from having a

considerable business value, they are understandable, defined at a sufficiently

detailed level, they are well identified by the team and, and further to that, there are

no doubts as to why they have to be executed. Product Owner can redefine task

priorities (moving them up or down within the stack) according to the changing

business determinants. He/she also can delete tasks, creating new ones at any stage

of the project work. This tool allows the Product Owner to optimize on a daily basis

the value the project has for an organization.

Scrum does not impose the form within which tasks are to be defined, and it

only requires that Product Backlog be measurable in terms of work effort. However,

not infrequently scrum teams use a user story format to describe the Product

Backlog items. User story is a well known approach to define functional and

nonfunctional requirements. Since user stories are very informal in nature, they are

understood by non-technical persons and can therefore be formulated by them.

A user story is a one-sentence description of a feature one expects from the

product that is being built. An example of a user story looks as follows: The user

must authenticate before starting to use the application. A particularized

specification can be additionally associated with the user story (e.g. acceptance

criteria, exceptions). Moreover, there is also a very formal form of the user story,

providing a standard set of information in accordance with the template, “As a (role)

I want (something) so that (benefit)”. For example, “As an administrator, I want to

delete the users’ accounts in order to block access to people who fail to comply with

the rules”.

User story is provided by Product Owner, yet he/she need not be its author. User

stories can be collected through discussion with stakeholders – persons who take

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

140

interest in the project’s success (e.g. potential users, sponsors, analysts). In Scrum,

however, it is Product Owner who is responsible for identifying and incorporating

user stories in the Product Backlog.

The first requirements tend to be formulated at a very general level of

abstraction. Among other things, this is due to the fact that at the beginning the

vision of the product is rather vague. A more detailed image emerges over the

course of time. This is the reason why the Product Backlog items are simultaneously

very general and very large functionally. That is why the effort related to them is

substantial and difficult to estimate, with the team being unable to execute a single

task during an iteration. Such tasks are known as epics. Epics are not estimated.

They need to be analyzed and broken down into smaller elements – the very user

stories.

Besides, user stories can be grouped in so called themes. A single theme groups

user stories which are linked with one another logically. For example, the theme

“administration tools” aggregates functionalities intended for the administrator’s

daily work.

Scrum defines prescribed events in the scrum process. These are: planning sprint

(iteration), daily scrum, sprint review and retrospective. While planning sprint, the

team chooses the user story it is going to realize by way of coming to a consensus

(negotiation) with the Product Owner. Next, the team plans technical tasks, at least

for those user stories which it intends to perform in the first place. Thus, single user

stories defined in a general way are attributed with specific subtasks which clearly

identify how they will be implemented.

Definition of Done is a concept linked to Scrum. Definition of Done is a mutual

agreement between the scrum team’s members which specifies precisely when the

work on a Product Backlog item will be completed. For example, the user story is

realized if there are automated unit tests and integration tests, continuous integration

server raises no objection, there are comments in the code and the code review has

been conducted. The team usually starts the project with a minimum Definition of

Done which it expands systematically during next iterations, thereby raising the

quality standards the product is to meet. It is worth pointing out that estimating

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

141

effort required for a single user story should also take into account the tasks

resulting from Definition of Done.

3.2 The distinction between effort, time-consumption and cost

The section below presents the definitions of the underlying concepts used

further on in the paper, i.e. effort, time-consumption and cost. These concepts,

although having different meanings, are quite frequently used interchangeably in the

practice of software development teams.

Time consumption implies the amount of time required to execute a user story.

Naturally it is expressed in time units. Time consumption, however, does not specify

the amount of work itself, but the time needed to perform a task.

Effort means the volume of work required to execute a user story. In practice, it

is expressed in various units, depending of the nature of the actions involved in the

execution of a particular work. For example, these can be code lines, screens

displayed to users or the forms they fill out. Still, it can also be a more abstract unit,

such as, for example, the well-known story points (Coelho, Basu 2012). However,

whatever the unit applied, the effort always answers the question as to how much

work a person executing a user story must perform. The information on effort and

the productivity of people engaged allow time-consumption to be determined.

Cost is to be understood as the resources an organization must allocate for the

execution of user stories. Depending on the nature of the organization itself and

practices adopted, cost can be expressed in, e.g. person-months, cash amount or any

other convenient form.

3.3 Choosing the right metric

The choice of the measure used to express effort, and thus – of the unit, can be

of relevance to the quality of the data collected and forecasts made. An ideal metric

is such for which there is only one possible interpretation as to the values expressed

with it. In order to have a better picture of it, it may suffice to compare the

measurement unit, “meter” with the approach used in the past when the distance

used to be expressed in days and weeks. Applying the time unit was reasonable at a

time a journey was only possible on a horseback or foot, and its speed was always

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

142

predictable. Nowadays this kind of measure might be misleading, given the diverse

means of transport of today.

The decision to express the effort required to execute user stories and technical

tasks in days and weeks (Jørgensen 2016) might seem a natural choice, when the

overriding goal is establishing work timetable and making plans with respect to the

official editions of the product, already tested and free of errors (as was the case for

the TOPO project). However, when the team is made up of persons whose

experience varies substantially, we encounter differences in work productivity, and

as a result – the time required for the execution of the same user stories and

technical tasks tends to be different, depending on who in the team was appointed to

perform them.

Further to that, the values thus estimated continuously become outdated, as the

productivity of the entire team grows, which arises directly from autonomous

expansion of the team’s knowledge of the issue in question, and ever better

familiarization with the technologies used. The effect is that these values become

useless and need to be re-estimated.

The problems above can be avoided if, instead of time units, we use a more

abstract measure – story points,

3.4 Estimating in story points

The name of this metric refers to the concept of the user story (Patton, Economy

2014). It specifies, albeit not directly, the amount of work needed to execute a single

functionality of the product that is being built. This measure, on the other hand, is

not directly linked to the execution time of the user story. The value expressed in

story points establishes the complexity (difficulty) of the work necessary to

complete the execution of a particular functionality. Story points metric can also be

used in the estimation of the total cost of maintaining software (Choudhari, Suman

2012: 761-765).

Story points are an abstract measure and for this reason they may cause some

difficulties when an inexperienced team decides to use them. This is confirmed by

the experiences while working on the TOPO project, following the decision to

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

143

implement an agile approach. It is not quite clear what estimation value the first user

story should get. In its case there is no point of reference.

The problem can be solved by launching an in-depth discussion on how some

selected user stories are to be executed. The discussion should dispel any doubts as

to the technical execution of the user stories. This knowledge provides the basis for

assigning estimations to user stories while applying story points. At this stage, those

values are used which the team considers to be appropriate. In this way a set of

reference user stores is created.

It is crucial for the complexities of the user stories from the reference set to be

defined as precisely as possible. The next user stories are estimated by comparing

them with this set, with the quality of further estimations being largely dependent on

this precision. A reference user story should, therefore, be chosen knowingly.

In addition, the practice consisting in estimating the reference set according to

days and hours may prove to be helpful. The numbers thus determined are then

assigned to user stories. From that moment on, these values are treated as story

points. This makes things easier for people who are strongly attached to time units.

Nevertheless, one should be aware that those values no longer refer to time-

consumption but to effort. This arises from the already mentioned phenomenon of

the increasing work productivity and team’s experience.

The range of the numbers themselves also carries certain importance. The

numbers which work well in practice are those ranging between 0 and 13. This is

connected with the particularities of human perception, and to be more precise, with

the easiness with which we make comparisons when numbers are not that much

different from one another. Some also recommend using numbers from the

Fibonacci sequence. The experience gained while working for the OSW, TOPO and

FOODIE projects shows that bigger numbers are inconvenient. The analysis of large

user stories is difficult and such user stories tend to be broken down into smaller

ones or subtasks are identified

3.5 Planning poker, that is, team estimation

Planning Poker (Mahnič, Hovelja 2012: 2086-2095; Moløkken-Østvold et al.

2008: 2106-2117) is a technique allowing for estimation to be made within a group

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

144

of developers. Estimation is made using cards (hence the name planning poker).

This technique brings about discussions which lead to the improvement in terms of

the teams’ awareness as to the amount of work involved in the execution of the user

stories.

As the experience of working with this technique shows, individual estimations

made by the team members for a single user story can vary substantially. This

becomes very clear in the FOODIE project. In extreme cases, one user story could

get estimations of 5 and 13 points simultaneously. Planning poker solves the

problem of disparities while demonstrating how risky it is to appoint just one person

to do the estimations.

This practice involves yet another trap. There are actual cases where the

discussion did not even take place. The value that is then chosen is the one proposed

by the majority or a person enjoying a considerable respect. Such a person can put

unintentional pressure on the rest of the team – this was the case in the TOPO

project. Yet another reason for falling into this trap is the team lacking sufficient

engagement in the estimation process.

4. Effort estimation

4.1 Estimation by comparison

According to this technique, the effort value (e.g. a story points number) for

US_X is defined by having it compared to a similar US_Y which was executed in

the past. In optimistic cases, the similarity between the user stories becomes

apparent at the level of the description included in the requirement specification

provided by the client. For example, in the OSW project, the complexity of the user

stories depended on the number of operations in the implemented web service

interface, on the structure of the input data and the number of the conditions for

those data validation. All this information was included in the functional

requirements documentation. In practice, the specification having that degree of

detail is very rare; however, the client ordering the product was very informed, also

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

145

technically informed, as to the final solution. The thorough analysis of the

requirements documentation allowed for a very precise effort estimation.

Dealing with such a comfortable situation is, however, seldom the case. The

functional requirements themselves are very often clear, with the team having the

competences to execute them. However, it is still not easy to compare user stories

when there are no similarities in the requirement definition. Then, a more in-depth

analysis is needed focusing on the identification of specific subtasks within the user

stories and afterwards, do the comparing at this level. What most frequently

transpires is that an analogy can be spotted, for example, in the number of new

modules, classes, methods or configuration elements.

4.2 Estimating tasks difficult to estimate

In practice we come across user stories to which it is difficult to assign a specific

effort value using the comparison method. The problem may occur when the goal is

not defined clearly. If this is the case, we should identify the reasons behind it and

then select a suitable solution.

One of the reasons why a user story may be too difficult to estimate is its being

too broadly defined. What appears to be a solution in such a situation is to re-

examine the requirement and/or split the user story into the smaller ones, or to

identify subtasks whose estimation is easier.

There are also user stories for which the developer team does not have complete

knowledge with respect to the technical aspects of their execution. If there is at least

one team member who is capable of saying how complex the user story is, he/she

can take the other developers through its technical aspects. The developer team must

then devote more time to discuss in more detail the complexity of that user story and

estimate it.

However, if the difficulty arises from having no idea how to solve a user story,

then it is worthwhile introducing an auxiliary task aimed at the

examination/identification of the problem. The task is not given an estimation. From

this perspective, it is treated similarly to an error (see “Error estimation”). And just

like an error, it reduces the productivity, since it is necessary to work on it, with this

work, however, being impossible to foresee.

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

146

Scrum methodology provides definition of the concept of Backlog Refinement.

This is a practice according to which there should be regular meetings of the team

with a view to identify and solve all doubts and problems linked to the definition of

requirements. This is when, for example, the effort required for the Product Backlog

items is being estimated. The auxiliary task already mentioned, being an element of

the backlog improvement, allows for a better insight into the requirement and the

method of its execution, consequently – the effort required.

This strategy worked well in the FOODIE project, which was based on a ready-

made framework, which from the very start provided a ready-made implementation

for a large portion of the project’s general requirements. How effective the

estimations of the next user stories were was largely dependent on the knowledge of

the framework and on its flexibility. It very often happened that the user stories

which seemed easy to execute ultimately required much more work than one would

believe based on the estimations. Employing auxiliary tasks before assigning

estimations contributed to having more accurate estimations.

4.3 Error estimation

The approach to error (bug) estimation may vary and it is closely dependent on

the nature of the cooperation between the contractor and the client.

In the OSW, TOPO and FOODIE projects, it was taken for granted that neither

bugs nor tasks which did not contribute to functional increment were to be

estimated. The assumption was that the projects were accounted for only on the

basis of the functionalities ordered, while all other tasks were necessary to ensure

the product’s high quality. Examples of those tasks include: bug fixing, preparing

technical documentation, comparison or reconfiguration of the infrastructure (e.g.

continuous integration server). Moreover, the tasks involving bug fixing are usually

difficult to estimate, for most of the work is devoted to looking for the cause of an

error with the fixing itself being relatively quick.

As a result, the effort required to realize the tasks which are not given

estimations becomes visible in the velocity of work. Every new functionality carries

the risk of bugs and requires to prepare, e.g. a part of technical documentation.

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

147

Every now and then, it is necessary to reconfigure the environment. The actual

velocity is then the result of the work on functionalities and non-estimated tasks.

Sprints whose productivity substantially departs from the average may be the

consequence of this kind of approach. These sprints are iterations in which one

deals, for example, with bugs.

If, for some reason, one needs to know the actual effort required to fix bugs, it is

useful to write down how much time was spent on all the tasks. Such tools as JIRA

offer the relevant functionality. This kind of knowledge, for example, makes it

possible to determine the ratio of the effort required to fix bugs to the rest of the

work.

5. Planning and forecasting

5.1 Sprint size estimation

Once the initial estimation of user stories has been completed (e.g. using the

story points metric), these user stories go to the first sprint chosen by the developers

by way of discussion, drawing on their own subjective beliefs as to their capabilities.

A completed sprint provides information about the team’s capacities. The sum of

estimations of the executed user stories is the first reasonable estimation of the size

of the next sprint. The user stories which were not completed will be transferred to

the next iteration, with the effort required for their realization being credited to the

sprint in which they will be completed (e.g. they will be consistent with the

Definition of Done that was adopted).

 Further sprints can be planned drawing on the observation of the average

work velocity expressed in points per sprint. The velocity refers to the team’s ability

to deliver complete functionalities. The experience obtained from the OSW, TOPO

and FOODIE projects shows that this value may change over time. During the

project’s initial phase, work productivity increases with every iteration. This allows

for increasing the size of the next sprints. To this end, one can use a velocity chart.

A practice which might prove useful involves calculating the size on the basis of the

weighted average of the last few iterations – earlier sprints receive smaller weights.

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

148

After a few, or a dozen or so iterations, the actual velocity can become stable.

This happens when the team has already become acquainted with the technology and

the user stories have been well defined, and they are similar to one another (as in the

OSW and TOPO projects).

5.2 Changes in work velocity

Fluctuations or single rapid changes of velocity are possible due to random

factors. The fluctuations can arise from imprecisely planned iterations, when the

user stories which were not completed go from one sprint to the next, being

classified as the results of the other sprint.

A rapid change in velocity reflects the changes in the method of work execution.

Leaps upward can be observed when the framework-like solution is being

implemented with the implementation of certain parts of the system becoming

considerably facilitated. This could be interpreted in two ways. The team may

recognize that its productivity has grown because it performs the same work faster

(the similarity of tasks at the level of functional requirement). However, at the

technical level, this is no longer the same work. User stories have become more

simplified and less work is needed to deliver the same functionality, and by

inference – the same business value for the product. It is then possible to consider

estimating again the tasks that are still to be realized - the simplest way to do so is to

multiply all the outstanding user stories of the similar type by a relevant coefficient.

This approach ensures a better quality of the estimation and forecast. Yet, it requires

more effort, for the team must keep comparing the user stories each time at the

technical level.

Leaps downward may also signal a change in the way the work is being

performed. This could be seen in the OSW project, which was executed using a

modular approach. First, the user stories from module X were realized. As second,

the similar work in the Y part was executed. However, in order to build the

foundations of the Y module, the software developers applied different technical

solutions which affected adversely the velocity in terms of the execution of very

similar functionalities.

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

149

5.3 Changes in the team’s composition

The risk that must be taken into consideration while starting software

development projects is that the composition of a team may change. The situations

where the team’s composition changes or a completely different team is appointed to

work on the project is a common practice. In those cases, the advantages of an

abstract metric (such as, e.g. story points) are fully revealed. Once this kind of

change has taken place, estimations are still up-to-date. Only velocity of work is

adjusted, and ultimately all the forecasts.

5.4 Varying engagement of the team’s members

There are instances when an organization allocates dynamically human

resources in a project. There might be incidences when the aggregated engagement

of staff, calculated, for example, in man days, changes from one sprint to another.

This problem can be dealt with by controlling the total participation. At the planning

meeting, the team declares its participation and on this basis the size of iterations is

determined. Any indicators and forecasts should then be determined in reference to

the average team engagement that was adopted.

 However, there are some difficulties when it comes to determining the

actual participation. One could assume that the team will be engaged at the level it

has declared. Yet, in extreme cases one does not manage to follow the declaration. If

this is the case, it is worth adjusting the values already recorded during the

discussion. Another approach to measuring engagement is to keep the information

on the time devoted to work on all the user stories (e.g. the log work function in

JIRA system).

6. Conclusion

In the paper, we presented a set of techniques within the scope of effort

estimation and the practical aspects of their application in the projects created in

agile methodologies. The considerations were based on projects of diverse

characteristics – taking into account, among other things, the industry, clients, the

size of the developer team – and the approaches to estimations.

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

150

The conclusion to be made is that the approach adopted by a particular team to

the issue of estimation is dependent on the very nature of the project. Planning poker

is a technique which yields good results in any undertaking, increasing the

estimation precision and raising the level of understanding user stories which await

their realization. When functional requirements are clear and the method of their

execution is well known, estimation may be based on brief descriptions of user

stories. This is not the case for complex technologies or an inexperienced team, for

then substantial attention must be paid to the planning of technical solutions.

However, whatever the selected plane for considerations, estimation by making

comparisons with the work already done delivers good results. In comparing, it is

important to strive for building a good quality reference set of user stories.

Moreover, using an abstract metric, such as, for example, story points, in contrast to

time units, allows one to avoid the trap of the changing work productivity.

The considerations and recommendations presented in the publication could be a

starting point for newly formed teams of developers and provide the basis for further

modifications, tailored to individual needs and working conditions.

Acknowledgement

FOODIE is a project co-funded within the CIP (Competitiveness and Innovation

Framework Programme) of the EU Seventh Framework Program (FP 7).

AGILE EFFORT ESTIMATION IN SOFTWARE DEVELOPMENT PROJECTS

151

References

Bjarnason E. et al. (2016), A multi-case study of agile requirements engineering and the use of test

cases as requirements, „Information and Software Technology”, no. 77, pp. 61-79.

Choudhari J., Suman U. (2012), Story points based effort estimation model for software maintenance,

„Procedia Technology”, vol. 4, pp. 761-765.

Coelho E., Basu A. (2012), Effort estimation in agile software development using story points,

„International Journal of Applied Information Systems (IJAIS)”, vol. 3 no. 7, pp. 7-10.

Farr L., Zagorski H.J. (1964), Factors that affect the cost of computer programming. Vol. II. A

quantitative analysis, System Development Corp, Santa Monica Ca,

http://www.dtic.mil/dtic/tr/fulltext/u2/607546.pdf [23.09.2017].

Jørgensen M., Shepperd M. (2006), A systematic review of software development cost estimation

studies, „IEEE Transactions on Software Engineering”, vol. 33 no. 1, pp. 33-53.

Jørgensen M., Grimstad S. (2011), The impact of irrelevant and misleading information on software

development effort estimates. A randomized controlled field experiment, „IEEE Transactions on

Software Engineering”, vol. 37 no. 5, pp. 695-707.

Jørgensen M. (2016), Unit effects in software project effort estimation. Work-hours gives lower effort

estimates than workdays, „Journal of Systems and Software”, no. 117, pp. 274-281.

Mahnič V. (2011), A case study on agile estimating and planning using scrum, „Elektronika ir

Elektrotechnika”, vol. 111 no. 5, pp. 123-128.

Mahnič V., Hovelja T. (2012), On using planning poker for estimating user stories, „Journal of Systems

and Software”, vol. 85 no. 9, pp. 2086-2095.

Moløkken-Østvold K., Haugen N.Ch., Benestad H.Ch. (2008), Using planning poker for combining

expert estimates in software projects, „Journal of Systems and Software”, vol. 81 no. 12, pp. 2106-

2117.

Nelson E.A. (1967), Management handbook for the estimation of computer programming costs, System

Development Corp, Santa Monica Ca.

Patton J., Economy P. (2014), User story mapping. Discover the whole story, build the right product,

O’Reilly Media, Inc., Beijing, Sewastopol.

Pendharkar P.C., Subramanian G.H., Rodger J.A. (2005), A probabilistic model for predicting software

development effort, „IEEE Transactions on Software Engineering”, vol. 31 no. 7, pp. 615-624.

Schwaber K., Beedle M. (2002), Agile Software Development with Scrum, Prentice Hall, Upper

Saddle River, NJ.

Schwaber K., Sutherland J. (2013), The Scrum Guide. The definitive guide to Scrum: the rules of the

game, https://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf [23.09.2017].

Maciej ŁABĘDZKI, Patryk PROMIŃSKI, Adam RYBICKI, Marcin

WOLSKI

152

Srinivasan K., Fisher D. (1995), Machine learning approaches to estimating software development

effort, „IEEE Transactions on Software Engineering”, vol. 29 no. 2, pp. 126-137.

Torrecilla-Salinas C.J. et al. (2015), Estimating, planning and managing Agile Web development

projects under a value-based perspective, „Information and Software Technology”, vol. 61, pp. 124-

144.

Zwinne szacowanie pracochłonności w projektach programistycznych – studium przypadków

Streszczenie

Cel: Celem niniejszej pracy jest wskazanie powszechnych błędów i pułapek, a także sprawdzonych

praktyk w zakresie estymacji pracochłonności w projektach programistycznych. Jakość oszacowań w

mniej doświadczonych zespołach jest często niezadowalająca, wskutek czego estymacja jako element

procesu wytwarzania oprogramowania jest porzucana. Decyzja zwykle uzasadniana jest błędnie

rozumianą „zwinnością”. Artykuł wpisuje się w dyskusję nad bieżącymi trendami w zakresie

szacowania, w szczególności w kontekście nowego podejścia „no estimates”.

Metodyka badań: Publikacja ma formę studium przypadków opartego o doświadczenia dojrzałego

zespołu programistycznego. Autor, na podstawie znanych z literatury technik estymacji, wskazuje

dobre i złe praktyki oraz często popełniane błędy w myśleniu i postępowaniu.

Wnioski: Kluczowe dla poprawnej estymacji okazują się: zrozumienie różnicy pomiędzy

pracochłonnością i czasochłonnością, umiejętność monitorowania wydajności, a także sposób

analizowania wymagań i sytuacja kadrowa zespołu.

Wartość artykułu: Publikacja pomaga opanować techniki podnoszące poziom zaufania do wszelkich

oszacowań (czasu trwania, a pośrednio – kosztu wytwarzania oprogramowania) tam, gdzie znane są

wymagania, jednak głównie na etapie realizacji projektu (projekt i implementacja).

Ograniczenia: Praca nie porusza problemów wstępnej estymacji przedsięwzięć, tj. estymacji

dokonywanej na wczesnych etapach planowania.

Słowa kluczowe: wytwarzanie oprogramowania, szacowanie, pracochłonność, miary, inżynieria

wymagań, story points, Scrum

JEL: L86

